MODELLO TAFEL-PIONTELLI PER LA PREVISIONE DELLA VELOCITÀ DI CORROSIONE IN AMBIENTE ACIDO

Applicazione al caso della corrosione da CO₂ (sweet corrosion) dell’acciaio: confronto con modelli esistenti

Relazione attività ottobre 2018 - settembre 2019
Contents

1 Introduction: aim of the work ... 3

2 Phase 1. CO₂ corrosion of carbon steel: State of the art ... 4
 2.1 Corrosion mechanism ... 5
 2.2 Corrosion rate predicting models ... 7
 2.2.1 de Waard-Milliams model (1975) ... 10
 2.2.2 de Waard-Milliams-Lotz model (1991) .. 11
 2.2.3 de Waard-Lotz model (1993) ... 15
 2.2.4 Dugstad database (1994) – NORSOK .. 17
 2.2.5 Nesic model (2003) – KSC and FREECORP 19
 2.2.6 Models comparison ... 21

3 Phase 2. Tafel-Piontelli model: description of the model 23
 3.1 Tafel-Piontelli model hypotheses and equations .. 23

4 Phase 3. Tafel-Piontelli model: Experimental validation .. 27
 4.1 Test protocol .. 27
 4.1.1 Test protocol – Surface-to-electrolyte volume ratio 27
 4.1.2 Test protocol – Mass lost tests ... 30
 4.1.3 Test protocol – Cathodic potentiodynamic polarization tests 32
 4.2 Results and discussion – Mass loss tests .. 38
 4.2.1 Corrosion rate ... 38
 4.2.2 Iron ions concentration ... 41
 4.3 Results and discussion – Cathodic potentiodynamic polarization tests 43
 4.3.1 Tafel slope ... 46
 4.3.2 Exchange current density .. 46
 4.4 Comparison with base Tafel-Piontelli model .. 49
 4.5 Revised Tafel-Piontelli model .. 52

5 Conclusions .. 59

6 References .. 60
1 Introduction: aim of the work

The aim of the research is to validate a model for the calculation of corrosion rate of active metals, as carbon steel, in acidic environment, i.e. when the main cathodic corrosion process is hydrogen evolution. Nowadays, in industrial application the evaluation of the corrosiveness of an environment with respect to a metal is often faced with an empirical (or semi-empirical) approach; indeed, the available corrosion maps and models are mainly based on experimental observations, laboratory and/or field measurements. The proposed model, called “Tafel-Piontelli Model”, is strongly based on the theory of corrosion kinetics, in particular on Tafel law and on the studies of R. Piontelli in this regard. An important application of the model could be the evaluation of corrosion rate of carbon steel in the presence of carbonic acid; this corrosion form is called “sweet corrosion” and represents a threat in O&G industry.

The research activities, hereafter described, are divided into three main sections:

- PHASE 1: state of the art on the available models for predicting the corrosion rate of carbon steel in an acid environment and in particular in the presence of CO₂ (sweet corrosion);
- PHASE 2: description of the basic Tafel-Piontelli model;
- PHASE 3: experimental validation of the Tafel-Piontelli model for predicting the corrosion rate in an acid environment.